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Abstract

This paper examines self-pressurization of cryogenic stor-

age tanks due to heat leak through the thermal protection

system and the performance of various pressure control tech-

nologies for application in microgravity environments.

Methods of pressure control such as fluid mixing, passive

thermodynamic venting, and active thermodynamic venting

are analyzed using the homogeneous thermodynamic model.

Simplified equations suggested in the paper may be used to

characterize the performance of various pressure control sys-

tems and to design space experiments.

Nomenclature

C coefficient defined in Eq. 9

E total system energy

h specific fluid enthalpy

m mass flow rate

P tank pressure

Q tank heating rate

r 1 parameter defined in Eq. 15

r2 parameter defined in Eq. 17

t time

u specific internal energy of tank fluid

V tank fluid volume not including volume occupied by
internal tank hardware

W power, rate of work done on control volume fluid

*Member, AIAA

x quality

¢ energy derivative defined in Eq. 5

p average tank fluid density

p" density ratio, pg/(pf-p$)

Subscripts:

f saturated liquid

fg liquid-to-vapor phase change

g saturated vapor

hsp homogeneous self-pressurization

i inlet

max maximum

mix mixer, mixing

o outlet

tvs thermodynamic vent system

w wall

Introduction

The thermal environment of space produces inevitable heat

transfer through the thermal protection system of a cryogenic

storage tank, which if unchecked, results in a continuous tank

pressure rise. The actual pressure rise rate is governed by the

complex interaction of external heat leak, fluid temperature

stratification, and interfacial heat and mass transfer. If the

required storage duration of a space mission is longer than the

period in which the tank pressure reaches its allowable maxi-

mum, an appropriate pressure control method must be applied.



Therefore, predictions of the self-pressurization rate and per-

formance of pressure control techniques in cryogenic tanks

are required for development of cryogenic fluid long-duration

storage technology and planning of future space exploration

missions. Pressure control technologies being developed at

NASA include high performance thermal insulation, fluid

mixing, and both passive and active thermodynamic vent
systems (TVS). 1-4 Schematic representations of self-pressur-

ization and pressure control technologies for application in

microgravity environments are illustrated in Fig. I.

Advanced multilayer thermal insulation systems can greatly

reduce the heat leak to a cryogenic storage tank. Vapor

cooled shields are sometimes utilized to further intercept

incoming thermal energy. Fluid thermal stratification gener-

ally augments the pressure rise rate of a tank subjected to a
wall heat flux (Fig. l(a)). Fluid mixing (Fig. l(b)) can be

used to circulate and mix the tank fluid destroying fluid tem-

perature stratification. Mixing induces interfacial condensa-

tion, resulting in the reduction of tank pressure. Interface

condensation plays a key role in controlling the rate of change

of tank pressure. Ideally, if a tank is well mixed, the fluid

temperature will be uniform and the homogeneous thermody-
namic model, which assumes uniform temperature through-

out the tank, may be used for the prediction of pressure
change rate. Since mixer power is required to circulate the

tank fluid, a certain amount of energy is added to the system.

This additional energy imparted to the fluid eventually becomes
heat and increases the net fluid energy. Thus, fluid mixing

can only temporarily reduce tank pressure and is of interest
for short-term storage. The design of the mixer influences the

efficiency and performance of a fluid mixing pressure control

system.

In the passive TVS concept (Fig. l(c)) a small amount of

tank liquid is withdrawn (continuously or intermittently) and

passed through a Joule-Thomson device, resulting in a lower

pressure and temperature two-phase fluid (since cryogens

near saturation have a positive Joule-Thomson coefficien0.

Depending on the design of the TVS heat exchanger, this two-

phase mixture is then directed to a heat exchanger to either

cool the tank fluid directly as shown in Fig. l(c) via passive

energy exchange (thermal conduction and/or free convection)

and/or to intercept the heat leak (vapor cooled shields) into

the tank. The fluid mixture is evaporated in the heat exchanger

and the resulting vapor is then vented overboard. With this

method, energy is removed from the system by sacrificing

some of the liquid contents of the tank. Thus, the passive

TVS may be used in a long-term storage system. However,

an undesirable weight penalty may occur, due to a large heat

exchanger surface area required to vaporize the vented fluid.

Also, the relatively slow passive heat transfer processes on

the tank side of the heat exchanger may lead to unacceptably

long lag times during attempted pressure control.

The TVS and fluid mixing techniques may be combined to

produce an efficient and fast response pressure control system.
This approach is called the active TVS. In the specific con-

figuration shown in Fig. l(d), the TVS heat exchanger is

designed to remove energy from the mixer flow; the resulting

subcooled liquid is then circulated back to the tank through a
nozzle to mix the tank fluid and induce condensation. An

optimal design of the heat exchanger and mixer is quite

important for proper active TVS performance.

This report presents an analysis of tank self-pressurization

and the aforementioned pressure control methods. Simplified

forms of the homogeneous model are given to provide a

design tool for space experiments. Practical examples are

also given to characterize the performance of pressure control

systems.

Homogeneous Model

A general form of the model for a cryogenic storage tank

can be obtained by applying the first law of thermodynamics
and conservation of mass to a control volume that contains the

tank liquid-vapor contents, assumed to be in a homogeneous
state. Internal tank hardware is not included in the control

volume. The control surface corresponds to the inside surface
of the tank wall, The first law for a variable volume with one

Q

a. Stratification &
Self-Pressurization b. Mixing

Q_

c. Passive TVS d. Active TVS

Figure 1 - Schematic representation of self-pressurization
and pressure control technologies
(mixer shown outside of tank for clarity).



inlet and one outlet (neglecting kinetic and potential energy

terms) is:

dE vdU dV '=__ + + Vu dp
dt P "_t pu-_- dt

= Q+ W+ mihi - moho- pdV
dS (1)

Power input to the control volume (e.g., mixing) is accom-

modated using a positive value for W.

Conservation of mass for a compression or expansion pro-

cess is expressed as:

__ = dVdm mi - mo = Vdp+
dt dt P"&" (2)

If specific internal energy is considered as a function of

density and pressure, u = u(p, P), then:

-- = + (3)
dt Cap Jp dt \3Pip dt

The general-purpose homogeneous equation for pressure

change rate is obtained by combining the above equations and

using the relationship h = u + P/p:

"_'=_/ Q+W+mi hi-h- p _ p

.n ['ho.h (_h'_ ] 2(Oh_ dV]
L (4)
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Figure 2 - Functional dependence of energy derivative
on density and pressure for LH2.
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where the energy derivative, dp, is defined as:

1
- au (5)

p(z )p
The total pressure change is obtained by integrating an

appropriate form of Eq. 4 using a known initial condition.

Figure 2 shows the parameter O as a function of average

fluid density and tank pressure for hydrogen at saturated, two-

phase conditions. It is seen that ¢ decreases with increasing

average fluid density, p, and increases with increasing tank

pressure, P. Energy derivatives for other cryogens such as

nitrogen and oxygen exhibit similar behavior.

Self-Pressurization

For self-pressurization of a closed constant volume cryogenic

tank experiencing heat leak only, Eq. 4 reduces to:

Given a fixed volumetric heating rate, Qw/V, the homoge-
neous model shows that the self-pressurization rate is increas-

ing with time because the energy derivative _ increases with

increasing tank pressure. Usually, the homogeneous model,

which assumes a uniform temperature in the tank, will give

the lowest pressure rise rate of a tank. Ground tests with

liquid hydrogen (LH2) have shown that the actual pressure
rise rate spans a range from approximately one 5 to more than

ten 6 times faster than the homogeneous model prediction for

well-insulated tanks. In low-gravity experiments, 7 the pres-
sure rise rate has been found to be slower due to reduced

buoyancy and an increase in the liquid-wetted wall area. The
homogeneous rate is a convenient baseline, as it represents

the slowest pressure rise rate in most normal-gravity situations.

Equation 6 indicates that the pressure rise rate linearly

increases with the tank volumetric heating rate, QJV, and the

parameter _. For the purpose of illustration, a self-

pressurization rate of two times the homogeneous prediction

is assumed as a characteristic rate for the examples provided

herein. Figure 3 shows the pressure rise of a spherical 52 m 3

LH 2 tank (a typical size for future spacecraft), initially at
101 kPa, at various fill levels (by volume) and heating rates.

The range of heating rate corresponds to the expected heat flux

range in full scale applications. It is seen that lower liquid fill

level (yielding smaller p and larger _) and higher heating

rate (yielding greater QJV) result in a greater tank pressure
rise rate. For 95 percent fill level, if the wall heating rate is
reduced from 100 to 20 W, the mi_qion duration can be increased

from 2.1 to 10.7 days, assuming the maximum allowable tank
pressure is 138 kPa. This implies that a well-designed thermal

protection system can provide a significant extension of the
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storage duration. This benefit occurs at all fill levels and is

enhanced if the allowable maximum tank pressure rise is larger.

Fluid Mixing

Mixing, such as that induced by an axial jet, may be used to
extend the storage duration. As the tank fluid is mixed,
thermal stratification is reduced and interfacial condensation

is promoted. It is assumed that the entire tank can be com-

pletely mixed such that a homogeneous state can be achieved.

When the fluid temperature becomes uniform, condensation

ceases and continued operation of the mixer will not produce
a further decrease in tank pressure.

Two possible modes of operation are continuous and inter-

mittent mixing. In the continuous mixing mode, a well-mixed

homogeneous state is maintained. Intermittent mixing is a
cyclic process in which fluid stratification occurs until a

specified operating pressure is reached followed by a mixing
period that lasts until a homogeneous state is achieved. The

cycle repeats until the pressure at the homogenous state

approaches the maximum allowable pressure. In either mode,

operation of the mixer results in heat input due to dissipation
of the mixer power that augments the pressure rise rate (as

compared to the homogeneous self-pressurization rate). Thus,

the mixer power, Wmi x (corresponding to the required jet flow

rate), and the mixing time, tmix, are two key variables gov-

eming mixing performance. For intermittent mixing, mixing

time is defined as the period beginning when the mixer is
turned on to when the tank pressure reaches the value corre-

sponding to a homogeneous state. For an efficient mixing

system, the total energy input by the mixer, Wmixtmix , should
be kept as low as possible.

Equation 4 when applied to a mixing operation in a fixed

volume tank with recirculating fluid reduces to:

d.P 0 CQw Wmix

--=dr v(Qw + Wmix) = _(1 + _) (7)

It predicts dP/dt > (dP/dt)k_. Therefore, if the tank is already
in a homogeneous state, fluid mixing will result in an increase

in pressure because of the additional heat input from the

mixer. If the mixer power-to-heating rate ratio is large, the

pressure rise rate with continuous mixing could be higher than

that of stratified self-pressurization. A large mixer power-to-

heating rate ratio could occur due to poor mixer design and/or

very high performance thermal protection systems. Equation 7
assumes the recirculating fluid does not exit and re-enter the

control volume. For an external pump, Wmi x would be replaced

by .mmix(l_...x,i-hmix, o) in the equation. It is possible to analyze
various mixing processes combined with self-pressurization

periods by the combined use of Eqs. 6 and 7 as is discussed in

the following example.

Several mixing situations that may occur are considered

below. In each situation the tank is initially 95 percent
full and saturated at 10i kPa. Homogenous self-pressurization

from 101 kPa to a specified operating pressure of 138 kPa

would require 21.4 days as shown in Fig. 4, and is con-

sidered the maximum possible duration for storage without

venting.

(1) If the mixer is off, Wmi x = 0, tank pressure rises at the

assumed rate of two times (dP/dt)hsp and will reach the oper-
ating pressure of 138 kPa in 10.7 days as shown in Fig. 4.
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Figure 5- Comparison of intermittent and continuous mixing
(95% ml, Qw=20w, v=s2m3).

(2) If the mixer runs continuously at Wmi x = 15 W, tank
pressure will reach 138 kPa in 12.3 days, as shown in Fig. 4.

This is only 1.6 days longer than case (1).

(3) If the mixer runs continuously at a lower power, such

as Wmi x = 3 W, 18.7 days will elapse before the pressure
reaches 138 kPa as shown in Fig. 4. This is 8.0 days longer

than case (1). It has been assumed that homogenous condi-

tions can be attained at the lower mixer power.

(4) Based on available ground-based mixing time correla-
tions, 8,9 the mixing time for the system under consideration is

less than 2 hr for a wide range of jet flow rates. Since the

mixing time is quite short, the total energy input by the mixer,

Wmixtmix, is negligibly small compared with the tank internal
energy. Thus, the tank pressure is reduced to about 119 kPa
(homogeneous condition) after the f'LrStmixing cycle as shown

in Fig. 5. If the mixer is run intermittently, two mixing cycles

are required to achieve a similar storage duration as for case (3).

The choice of intermittent versus continuous mixing is

determined by comparing the energy inputs for each method.

Considering that the power required to achieve a well-mixed

state from a thermally stratified state is not likely to be sub-

stantially higher than that needed to maintain homogeneous

conditions, the intermittent mode is expected to be more
efficient•

In reality, when the mixer is turned on, interface condensa-

tion begins and tank pressure starts to decrease. As the fluid
is mixed to a certain degree, the pressure reaches a minimum

value that is higher than the corresponding value for the

homogeneous self-pressurization process. At this moment,

the competing effects of wall heat flux (increasing tank pres-

sure) and induced interface condensation (decreasing tank

pressure) on the pressure change become balanced. As the

mixer continues to operate, the rate of tank pressure change

becomes positive, due to diminishing interfacial condensation.

Also, the mixer power input generates heat, inducing liquid

evaporation instead of condensation as homogeneous condi-

tions are neared. Therefore, mixing time should be established

as the time period from when the mixer is turned on to when

the tank pressure reaches a minimum. Over- or under-

prediction of the mixing time and/or mixer power will affect

mixing performance efficiency.

Passive Thermodynamic Vent System

A constant volume tank of homogeneous fluid subject to

either direct venting or passive TVS operation is governed by
the following form of Eq. 4:

-=-{ IdP ¢ Q-too ho-h-p
dt V p

= mtvshfg (x+P*)] (8)

where x is the quality of the fluid entering the J-T device,

p" = p g/(p f- p g), and Qtvs is the heat removal rate of the TVS
heat exchanger. A work term is not included since the vent

flow is passively driven by the tank-to-vent pressure drop. If

vapor cooled shields are utilized, the vent flow will alter the

heat leak rate, Qw. If Qtvs = 0, then Eq. 8 represents the
homogeneous state of direct venting with x = t for saturated

vapor only and x = 0 for saturated liquid only.

For normal TVS operation, liquid is withdrawn from the
tank through a liquid acquisition device such that the fluid

entering the J-T device has a quality x = 0. The heat removal
rate by the lower pressure two phase flow as the fluid passes

through the heat exchanger can be expressed as:

Qtvs = mtvsAhtvs = C mtvshfg (9)

In Eq 9, C is set equal to Ah. v/tl. where Ah. v is the change• ---t s,--tg --a s
in enthalpy in the TVS heat exchanger and hfg is the latent heat
of vaporization corresponding to the tank pressure. The coef-

ficient C is a system parameter and its value depends on the

performance of the TVS heat exchanger, J-T device, and the

tank and vent pressures. For a properly designed space-based
system typical values of C may vary from 0.8 to 1.1. Thus,

Eq. 8 becomes:

d--t= Qw I- Q

dP t (tO)



The above equations may be used to compare the perfor-

mance of a passive TVS to an ideal TVS for an isothermal

fluid system. In an ideal TVS, the vapor leaves the heat

exchanger at a temperature equal to the tank fluid temperature,

i.e., Ahtv s is at a maximum. For a LH 2 system the maximum
value of C (an ideal system) can be approximated by:

Cmax-- I + 4.3xl0"zAP (forP < 400kPa) (11)

where AP (in kPa) is the difference between the tank and TVS

pressures.

Equation 10 is useful for specifying the range of vent flow

rates required to maintain constant pressure. Figure 6 shows

that for a given pressure change rate, the required TVS flow

rate decreases with an increasing value of the coefficient C.

In passive TVS operation, the conduction- and/or natural

convection-dominated heat transfer process leads to a slow

tank pressure response to the system operation. In reality, a

significant amount of TVS flow will be vented before a reduc-

tion in tank pressure occurs. In addition, the tank fluid will be

thermally stratified. Thus, the TVS flow rate and the total
vented mass obtained from Eq. 10 are expected to be lower

than actual requirements.

Active Thermodynamic Vent System

Assuming that a constant volume propellant tank is in a

homogeneous state when the active TVS pressure control

method is applied, the homogeneous equation can be simplified

and used to predict the rate of change in tank pressure:

dt = Qw + Wmix - mtvsAhtvs - mtvshfgp*_ (12)

where it has been assumed that saturated liquid is removed via

a liquid acquisition device. It is noted that Wrnix - mtvsAhtvs

may be replaced by -mmix(hmix,o-hmix,i).

To maintain constant lank pressure, the required energy

removal rate by the TVS heat exchanger is:

(rntvsAhtvs)_/dt=0 = Qw + Wmir - mtvshfgp* (13)

Thus, Eq. 12 can be expressed as:

d-"_ = Qw 1 + Qw (t-rt) (14)

where the parameters, r 1 is defined as:

mtvsAhtvs
rt = (15)

(mtvs AhtvS)dP/dt=0

The parameter r 1 represents the ratio of total heat actually
removed from the mixer fluid to the total heat required to be

removed in order to have dP/dt = 0. Several observations can

be made regarding Eq. 14:
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Figure 6 - Passive TVS Performance For

Liquid Hydrogen at 138 kPa.

(1) If rntv s = 0 (r 1= 0) and Wmi x > 0, then fluid mixing

only is performed and Eq. 14 will yield Eq. 7.

(2) If mtv s > 0 (r 1 > 0) and Wmi x = 0, then passive TVS
only is performed yielding Eq. 10.

(3) if both mtv s > 0 (r I > 0) and Wmi x > 0, then active TVS

is performed.

Equation 14 is functionally equivalent to:

dP/dt _f[" Wmix mtvshf_p " ]

Lr'' E J (16)

Based on Eq. 16, the performance of an active TVS can be
evaluated as a function of relevant parameters. Figure 7 shows

the effect of r I on the pressure change rate for Wmix/Q w = 0.05

and 0.5 and mtvshfgp'/Qw equal to 0.05 and 0.I which are
representative values for spacecraft tanks. If the actual heat

removed by the TVS heat exchanger has a 50 percent varia-

tion from the required value for dP/dt = 0, (i.e., r I = 0.5 or 1.5),
then dP/dt = +50 and +75 percent for Wmix/Q w = 0.05 and 0.5,

respectively. The sensitivity of (dPIdt)l(dP/dOhsp. to r !
increases as Wmix/Q w increases. Thus, lower jet now rate
and/or improvement of mixer efficiency, resulting in lower

required mixer power, gives improved mixing performance.
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The required energy removal rate specified by Eq. 13 to

maintain dP/dt = 0 includes that required to offset heat addi-

tion from the mixer. A parameter, r2, representing the frac-
tion of the total TVS mass flow rate used to remove this

mixer-generated heat can be defined as:

[ Wmix ]r2 = Qw + ----Wmix -mtvshfgp JdP/dt=0 (17)

Figure 8 shows the effect of the mixer power-to-volumetric

heating ratio, Wmix/Q w, on the parameter r 2. It is observed

that the effect of the ratio, mtvshf89 */Qw, on r 2 is quite small
for a wide range of mixer power input. However, for a given

TVS flow rate, r2 increases significantly with increasing Wmix/

Qw" For example, Wmix/Q w" 0.05 has a value of r2 equal to

0.04 while the value of r2 for Wmix/Q w = 0.5 is greater than
or equal to 0.3. The design of an active TVS should have a

value of Wmix/Q w as low as possible.

Combining Eqs. 9 and 12 gives:

"_--I Wmix mtvshfg (C + P*)]
dP= 1+
dt Qw Qw

dP 1+ (18)
= -_t hsp Qw Qw

It is observed from Eqs. 10 and 18 that, based on the

homogeneous model, more TVS mass flow is vented by an

active TVS than by a passive TVS due to the additional heat

input by mixer power provided C is equal for both systems.

However, in the active TVS operation, the heat transfer pro-
cess is due to forced convection which has a much faster time

response than the conduction/natural convection processes in

the passive TVS. Also, tank thermal stratification is largely

destroyed in active TVS, but not in passive TVS. Therefore,

in reality, the homogeneous model is more appropriate for an
active TVS than for a passive TVS. If the mixer power is not

exceptionally large, the active TVS should be more efficient

than a passive TVS. It is noted that in the design of an active

TVS pressure conlrol experiment, one can evaluate the order

of magnitude for each term on the right hand side of Eq. 18.

Conclusions

An analysis of the self-pressurization of a cryogenic stor-
age system and the performance of pressure control devices

such as fluid mixing, passive TVS, and active TVS has been

presented. Simplified equations based on homogeneous mod-

els are given for the prediction of pressure change rate for a
self-pressurizing tank with or without a pressure control device.
Several conclusions are drawn:

1. The pressure change rate of a tank generally increases

with tank volumetric heating rate, Qw/V.

2. Pressure rise rate can be temporarily reduced by fluid

mixing, an appropriate method for moderate extension of
short-term storage duration. An optimal design of the mixer

device is one which has the lowest value of the product of

mixer power and mixing time,Wmixtmix , for a given tank
pressure reduction rate. Intermittent mixing is preferred over

continuous mixing. The mixing time and mixing power of a

given system should be accurately predicted to obtain an

efficient pressure control procedure (i.e., to minimize

Wmixtmix).

7



3. Foragivenpressurechangerateinapassiveoractive
TVS, therequiredflow ratedecreaseswith increasing
C(-Ahtvs/hfg). An active TVS design should have a value of
Wmix/Q w as low as possible such that the fraction of total
TVS flow rate required to remove the heat generated by the
mixer is minimized. The determination of actual TVS heat

exchanger and mixing device effectiveness are needed to

predict the values of mtvsAhtvs and mmixAhmi x, respec-
tively, required for either maintaining constant tank pressure

(dP/dt = 0) or reducing the tank pressure at a desired rate.
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